
Chapter 5

Dark matter detection rates
Now that the design and optimisation of SABRE South has been discussed in great detail, a

question naturally presents itself: how well will the setup be able to observe DM? And, how

can this ability be quantified and compared to the capability of other experiments that use

different targets?

This Chapter explains in detail the various ingredients required for this calculation, and

presents a method used to compute the sensitivity of an experiment to the DMmodulation

signal designed for use in Refs. [100, 101].

In general, the DM detection rate depends on three key inputs: theoretical explanation of

how the interaction process proceeds, the DM velocity distribution, and the detector re-

sponse to the interaction rate the first two produce. These are discussed separately in the

following sections.

5.1 Dark matter interaction rate
The differential DM interaction rate (as in, how frequently an interaction is expected to

occur between DM and some target), with respect to nuclear recoil energy ER, is given by

dR

dER

= NT
ρ

mχ

∫ vesc

vmin

vflab(~v)
dσT
dER

d3v, (5.1)

where the NT is the number of target atoms per kg of target, ρ the DM density, dσT/dER

the scattering cross section, and flab(v) is the DM velocity distribution in the lab frame,

with an that integral goes from the minimum velocity in the lab frame that can produce a

recoil of a given energy,

vmin =

√
mTER

2µ2
χ,T

, (5.2)

up to the galactic escape velocity. The reduced mass of the system, µχ,T , is given by

µχ,T =
mχmT

mχ +mT

. (5.3)

Typically, one can interpret the scattering cross section dσT/dER as the particle physics

content of the interaction rate, while the velocity distribution f(v) is the astrophysical con-
tribution. The calculations of these will be discussed in the following subsections, before a

sensible way to combine them (designed for the analysis of this thesis) is presented.

5.1.1 Dark matter particle interactions
In general, the scattering cross section is computed by taking the squared scattering matrix

and averaging it over the spins

dσT
dER

=
mT

2πv2

[
1

2jχ + 1

1

2jT + 1

∑
spins

|M|2
]
, (5.4)
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where jχ and jT are the spins of the DM and target. The exact expression for

∑
spins
|M|2

will depend on the particular interaction of interest. Typically, this is computed by using an

Effective Field theory (EFT) with an effective Hamiltonian constructed from a number of

operatorsOj that depend on the exact process of the scattering:

H(r) =
∑
τ=0,1

15∑
j=1

cτjOj(r)tτ , (5.5)

where t0 = 1 and t1 = σ3, the third Pauli matrix. The exact interaction that occurs between

DM and a nucleus is described by the non-relativistic nucleon operatorsOi for a particular

model. Each of these operators will correspond to an effective high energy operator and is

the result of integrating out the (unknown) mediator, which dictates the DM model under

consideration. In some cases, a non-relativistic nucleon operator may be associated with

more than one high energy effective operator, meaning that the two models cannot be dis-

tinguished via a direct detection experiment.

These operators depend on a number of different factors, including the exchanged momen-

tum ~q, the incoming relative velocity ~v, and the DM and nuclear spins
~jχ and

~jN . The su-
perscript τ allows for isoscalar (τ = 0) and isovector (τ = 1) couplings, which are related

to proton and neutron couplings cpj and c
n
j via

cpj =
1

2

(
c0j + c1j

)
,

cnj =
1

2

(
c0j − c1j

)
.

(5.6)

Following the methodology of Ref. [102–104], these operators can be used to calculate the

cross section for scattering between DM and a nucleus via typical EFT formalism.

The couplings cj influence the detection rate via the inclusion of the nuclear form factors

F
(ab)
ij (v, q), which convert the scattering cross section of a single nucleon into a cross section

that can be used for a full target nucleus. This is then used to represent the scatteringmatrix;

1

2jχ + 1

1

2jT + 1

∑
spins

|M|2 =
15∑
i,j

∑
a,b=0,1

c
(a)
i c

(b)
j F

(ab)
ij (v, q), (5.7)

where ci,j are the same coefficients of Eq. 5.5, and q is related to ER by

q2 = 2mTER. (5.8)

Here, and throughout this thesis,N subscripts refer to an individual nucleonwhile aT refers

to the full target nucleus. A full list of the form factors used in this analysis for
23
Na and

127
I

can be found in Appendix A of Ref. [102].

To ease computation, as in Ref. [105], it is possible to express these coupling constants as a

vector c0

c0 =
15∑
i

∑
a=0,1

c
(a)
i êai = c0ĉ0, (5.9)

where ê
(a)
i are unit vectors that represent the relative coupling strength of the various op-

erators. In this way, the fit of the couplings constants can be separated into the fit of the
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direction and norm of the vector c0. Thus, all the information about the relative contri-

butions of different operators/form factors are contained within ĉ0, allowing for c0 to be

pulled out of Eq. 5.7 as a common factor:

1

2jχ + 1

1

2jT + 1

∑
spins

|M|2 = c20
∑
i,j

∑
a,b=0,1

ĉ
(a)
i ĉ

(b)
j F

(ab)
ij (v, q). (5.10)

Adopting the parameterisation

σχ ≡
µ2
Nc

2
0

π
(5.11)

then allows for fits to a DM cross section σχ, as well asmχ, and the components of ĉ0. The
differential cross section can this be expressed as

dσT
dER

=
mT

2πv2

[
1

2jχ + 1

1

2jT + 1

∑
spins

|M|2
]
,

=
mT

2v2
σχ
µ2
N

[∑
i,j

∑
a,b=0,1

ĉ
(a)
i ĉ

(b)
j F

(ab)
ij (v, q)

]
.

(5.12)

It should be noted, however, that the value of σχ, and indeed what it physically representswill
depend on the basis in which c0 is normalised. For example, with c0 normalised as shown

in Eq. 5.9, σχ will represent the coupling between DM and the isospin state of the target. To

compute the coupling between DM and the nucleus, c0 would need to be normalised with

respect to the nuclear basis so that

c0 =
15∑
i

∑
a=n,p

c
(a)
i êai = c0ĉ0. (5.13)

Alternatively, the direct coupling between DM and a particular nucleon can also be found

using the conversions in Eq. 5.6. To avoid confusion, the rest of this thesis will use the

following notation to distinguish between the slightly different forms and meanings of σχ

• σχ,0 - the scattering cross section for DM off the isospin state of a nucleus.

• σχ,N - the scattering cross section for DM off an atomic nucleus.

• σχ,p - the scattering cross section for DM off a proton (or neutron, where n is used

instead of p).

Nominally, any one of these can be used to calculate the other two but, where possible,

results will be presented for σχ,p as tends to be standard for the literature.

5.1.2 Dark matter velocity distributions
As discussed in Chapter 1, the velocity distribution typically assumed for galactic DM is the

Standard Halo Model (SHM), where the DM follows a Maxwell Boltzmann distribution

fSHM(v) =
1

(πv20)
3/2

exp

[
− 1

v20
(~v + ~vE)

2

]
. (5.14)
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The velocity of the Earth is given by ~vE = ~v� + ~vt, where

~v� = v�(0, 0, 1),

~vt = vt(sin 2πt, sin γ cos 2πt, cos γ cos 2πt).
(5.15)

In this frameof reference, theDMvelocity is expressed as~v = v(sin θ cosφ, sin θ sinφ, cos θ).
The typically assumed values for constants are given in Table 5.1.

DM density ρ 0.3 GeV cm
−3

Dispersion velocity v0 220 km/s

Escape speed vesc 550 km/s

Solar v� 232 km/s

Rotational velocity vt 30 km/s

Angle of orbit γ π/3 km/s

Table 5.1: Typical values used for particular velocity distributions.

As discussed in detail in Sec. 1.3.1, the relative motion of the Earth around the Sun as it

moves through the galactic WIMP flux produces an annual modulation, the value of which

will depend on the value of vmin. As shown in Eq. 5.2, vmin will change with both target and

DMmasses, meaning that the same DM particle can and will produce very different looking

modulation amplitudes in different experiments. In particular, combinations that give vmin<

200 km/s will generate a negativemodulation that peaks in December rather than the tradi-

tionally expected June. To get a basic understanding of how much this vmin will impact the

modulation fraction, the integral of the velocity distribution in January is subtracted from

the integral in June, and divided by the average velocity. This is plotted as a function of

vminin Fig. 5.1 and gives modulation fractions that range from -2.5% up to 30% for the SHM

model. Although the value of this modulation fraction is typically quoted as on the order of

1% [106], it is clear from these plots that this can vary depending on the target, and change

even more for interaction models like those detailed in Ref. [107] (and discussed in Sec. 6.1)

that increase the minimum velocity accessible by a target. Thus, although this modulation

is a useful signpost for searches, analysis of a clear R0 attributable to DM as well as Rm is

required to distinguish between various models under consideration.

As well as the dependence on vmin, results from the Gaia satellite and astrophysical sim-

ulations have suggested that the SHM is too simplistic to describe the DM content of the

Milky Way [108–110]. In particular it is becoming increasingly accepted that the DM dis-

tribution is likely to have substructure that mimics that observed in baryonic matter, such

as the Helmi [111] or Sequoia [112] streams and the Gaia Enceladus (GSE) [113]. The exact

nature of the substructure will impact the expected interaction rate in different ways. First,

it will impact the annual modulation as not all the substructure is aligned with the usual

‘WIMP wind’, meaning that the interaction rate will no longer produce a nice clean cosine.

Second, although the distribution flab(v) itself is independent of both the interactionmodel

and target under consideration, the integral bound vmin will be influenced by both the DM

and target masses. Thus, substructure that appears in either the low or high velocity regions

can mean that different targets can observe significantly different interaction rates for the

same model.
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Figure 5.1: Integral of the velocity distribution in Juneminus the distribution in January as a function

of minimum velocity, divided by the average velocity to give the modulation fraction.

Substructure is typically added to the velocity distribution by introducing a substructure

scaling factor η so
f(v) = (1− η)fSHM(v) + ηfsub(v), (5.16)

where fsub(v) describes the substructure being included, and η is able to take values up to

0.3.

Much like themodulation fraction itself, features induced by these substructureswill change

from detector to detector, and so in an ideal case results across a variety of different targets

would be used to constrain the correct distribution. A few examples of these, and their

impact on interpreting data, are explored further in Sec. 6.6.1.

5.1.3 Total interaction rate
To allow for easier computation by separating the particle theory and astrophysics contri-

butions, the observation is made that all the terms in the form factor sum are either inde-

pendent of velocity, or proportional to v2. This allows for the separation of form factors so

F
(ab)
ij (v, q) = F

(ab),1
ij (q) + v2F

(ab),2
ij (q). (5.17)

Therefore, the cross section can be expressed as two terms, with different velocity depen-

dence:

dσT
dER

=
1

v2

(
dσ1

T

dER

+ v2
dσ2

T

dER

)
, where

dσl
T

dER

=
mT

2

σ0
µ2
N

[∑
i,j

∑
a,b=0,1

ĉ
(a)
i ĉ

(b)
j F

(ab),l
ij (q)

]
.

(5.18)
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Using this, Eq. 5.1 can be rewritten in terms of two integrals:

dR

dER

= NT
ρ

mχ

σ0mT

2µ2
N

∑
i,j

∑
a,b=0,1

ĉ
(a)
i ĉ

(b)
j

(
F

(ab),1
ij (q)

∫
flab(~v)

v
d3v + F

(ab),2
ij (q)

∫
vflab(~v)d

3v

)
.

(5.19)

To simplify this, the velocity integrals are expressed as∫
flab(~v)

v
d3v = g(vmin) =

∫∫
D
v flab(~v)dv dΩ,∫

vflab(~v)d
3v = h(vmin) =

∫∫
D
v3 flab(~v)dv dΩ.

(5.20)

withD defined as

v > vmin(ER), |~v + ~vE| < vesc. (5.21)

These integrals then form prefactors that, aside from vmin, do not depend on the particle

physics DM model in question. They are then multiplied by the appropriate form factors,

giving

dR

dER

= NT
ρ

mχ

[
dσ1
dER

g(vmin) +
dσ2
dER

h(vmin)

]
= NT

ρ

mχ

σ0mT

2µ2
N

∑
i,j

∑
a,b=0,1

ĉ
(a)
i ĉ

(b)
j

[
F

(ab),1
ij (q)g(vmin) + F

(ab),2
ij (q)h(vmin)

]
.
(5.22)

The benefit of expressing the rate in this way is that it allows for the separate calculation of

the astro and particle physics contributions. This makes computation and comparison for

different combinations of DM interaction models and velocity distributions significantly

easier to perform, as it removes the need to reevaluate these integrals for every different

DM model. Where an explicit expression for the modulation is desired, expressions in Eq.

5.20 can be projected onto A+B cos[ω(t− t0)], giving an interaction rate of the form

dR(t)

dER

=
dR0

dER

+
dRm

dER

cos[ω(t− t0)]. (5.23)

As such, there are four forms for the velocity distribution that are of use for these calcu-

lations: g0(vmin), gm(vmin), h0(vmin), and hm(vmin). These are shown for the SHM in Fig.

5.2.
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Figure 5.2: Results from the SHM velocity integrals as a function of vmin; g(vmin) and h(vmin),
where the modulating and constant components have been separated.

5.2 Detector response
The expression given in Eq. 5.1 is the expected rate of nuclear recoils due to DM. In real-

ity, the detection process will introduce additional threshold cutoffs, smearing, and require

calibration between the actual nuclear recoil energy, and the energy measured by the detec-

tor. Thus the observation rate (referred to here and the rest of this thesis as dR/dE ′
) as a

function of the observed energy (E ′
in units of keVee) will take a different form to that of the

interaction rate (dR/dER) as a function of the nuclear recoil energy (ER in units of keVNR).

5.2.1 Quenching factors
For scintillation detectors, the intrinsic light yield of the target can be different for electron

vs. nuclear recoils [114, 115]. Because these setups tend to be calibrated with gamma ray

sources, energy depositions are recorded in units of electron equivalent keV (keVee), which

is based on the amount of light that an electron recoil of that value would produce. Tomodel

nuclear recoils (which are the expected signal for DM), a calibration known as the quenching

factor (QF) must be used. Essentially, it is a unit conversion between the observed electron

equivalent energy Eee (keVee) and the actual nuclear recoil energy ER (keVNR), and can be
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computed using neutron scattering experiments. This correction takes the form

ER =
Eee

QF
,

dR

dEee

=
dR

dER

dER

dEee

.

(5.24)

As NaI(Tl) is a composite target, the QF for both Na and I must be measured. In the past,

DAMA have made the assumption that for Na, QF=0.3, and for I, QF=0.09 [45]. However,

recent studies [114, 116–120] have indicated that for Na in particular this ratio may have

some energy and/or detector dependence. As this value relates to the energy region being

probed by a detector, it is imperative that it is well understood to ensure the correct DM

models and parameters are being constrained or ‘discovered’. A selection of measured val-

ues are shown in Table 5.2, with a larger range of observations in Fig. 5.3.

Stiegler et al. (2017) [118] Xu et al. (2015) [117] Bignell et al. (2021) [116] Joo et al. (2019) [114]

ER (keVNR) QF (%) ER (keVNR) QF (%) ER (keVNR) QF (%) ER (keVNR) QF (%)

7.31 8.0 5.7± 0.7 13.3± 1.8 36± 5 16.0± 1.3 8.7± 1.3 9.6± 1.6

8.39 5.6 8.8± 1.2 12.9± 1.4 58± 1 19.8± 0.9 14.8± 1.6 11.3± 1.2

9.46 6.8 9.1± 1.2 16.2± 1.2 65± 8 21.0± 0.8 22.7± 2.0 14.1± 1.3

11.6 8.0 14.3± 2.4 15.9± 1.9 71± 10 23.5± 0.8 30.1± 2.2 17.2± 1.3

17.7 10.5 15.0± 1.4 16.0± 1.0 79± 3 21.6± 1.1 46.1± 2.8 17.3± 1.1

20.8 12.5 19.4± 1.6 16.8± 0.9 86± 12 19.4± 0.7 62.6± 3.2 18.1± 0.9

30.2 14.25 24.9± 2.4 17.1± 1.0 96± 3 22.3± 0.9 78.9± 3.6 21.3± 1.0

3104 15.25 29.0± 1.9 18.8± 0.8 102.7± 4.1 22.1± 0.9

34.4 14.0 33.3± 2.8 19.1± 1.1 151.6± 5.0 22.9± 0.8

39.7 18.0 43.0± 2.2 20.4± 0.8

47.7 18.0 51.8± 2.6 20.7± 1.0

Table 5.2: A range of observed Na QF values.

It is still an open question within the field whether the differences in these observations

are due to systematics, different measurement or calibration methods, or whether the QF

is a value that changes from crystal to crystal. Because it is the result of particular optical

qualities of a crystal, it is possible that its value changes from crystal to crystal. The impact

of the uncertainty surrounding this is discussed further in Sec. 6.2.
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Figure 5.3: A number of Na QF measurements, taken from Refs. [43, 114, 116–122].

5.2.2 Resolution
The energy resolution of a detector is a measurement of how clearly features in the energy

spectrumwill appear. This will influence the observed rate of interaction, effectively smear-

ing the signal and causing recoils of energy Eee to be observed as a Gaussian distributed

spectrum [115]. This can be understood by using a toy signal made up of a series of delta

functions. If each delta function is in reality smeared over neighbouring bins, then the total

energy rate expected in a particular energy bin E ′
is the sum of the gaussian contributions

from those that neighbour it. Thus, the differential rate will undergo a transformation

dR

dE ′ =
1

(2π)1/2

∫ ∞

0

1

∆Eee

dR

dEee

exp

[
−(E ′ − Eee)

2

2(∆Eee)2

]
dEee, (5.25)

where ∆Eee is the energy resolution of the detector. ∆Eee is related to the FWHM of a

measured peak in the detector, where ∆Eee =FWHM/2.35 [115]. NaI(Tl) targets tend to

use the 59.5 keVee peak from
214

Am to measure this value.

In general, the resolution of a detector is expected to follow a function of the form

∆Eee = α
√
E + βE, (5.26)

due to the different sources of fluctuation in the detector. These can be due to a number of

features, including drift of detector characteristics over time, random noise, and statistical

fluctuations. The factor α can be thought of as the (irreducible) statistics based component,

while β accounts for all other sources [96]. For NaI(Tl) detectors, the α term tends to dom-

inate this expression.
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5.2.3 Efficiency
The threshold detection efficiency will influence the probability of an event of a given en-

ergy actually being observed by the detector. This will depend on a variety of factors, some

intrinsic to the detector (such as the quantum efficiency of PMTs) and others that come about

due to analysis, e.g., background or veto cuts for a detector. In general it is accounted for

by using an energy dependent scale factor ε(E ′). For the NaI(Tl) experiments of interest for

this thesis, the poor low energy efficiency of the detectors constrains their observations to

above 1 keVee.

5.2.4 Total observation rate
Combining these three detector responses, the observation rate as a function of observable

energy is

dR

dE ′ =
ε(E ′)

(2π)1/2

∫ ∞

0

1

∆Eee

dR

dER

dER

dEee

exp

[
−(E ′ − Eee)

2

2(∆Eee)2

]
dEee. (5.27)

Here, all of the model dependent terms are contained within
dR
dER

. The general workflow of

such a computation (developed in Ref. [123] for this thesis) is shown in Fig. 5.4. This was

designed to bemodular in form, to allow for easy implementation of improved astrophysical

or theoretical calculations, and to easily test different experimental variables.

Figure 5.4: DM computation workflow, implemented in Ref. [123].

5.2.5 Multi element targets
For DM targets that are made up of more than one element, such as NaI, the calculations for

each element must be done separately, then added together. Thus the total, overall rate will

be given by the rate in each target nucleus i, weighted by their contributing massesmi as a

fraction of the total molecular massm
Tot
:

dR
Tot

dE ′ =
∑
i

mi

m
Tot

dRi

dE ′ . (5.28)
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For NaI(Tl) detectors, the two DM targets are the Na and I (the Tl is present in low levels

only to support the scintillation process), and so the total DM rate will be

dR
Tot

dE ′ =
mNa

mNa +mI

dRNa

dE ′ +
mI

mNa +mI

dRI

dE ′ . (5.29)

5.3 Experimental sensitivity
In general, experimental sensitivity is assessed based on how well a signal can be distin-

guished over some background model. For frequentist statistics, this can be thought of as

hypothesis tests, and will fall into one of two categories:

1. Signal discovery: the background only model is adopted as the null hypothesis, and

tested against the alternative hypothesis of background plus the signal of interest.

2. Signal exclusion: the signal plus background model is adopted as the null hypothesis,

and tested against the alternative of the background only case.

These are used to quantify experimental sensitivity by simulating or generating data under

the alternative hypothesis, and testing its compatibility with the predictions of the null hy-

pothesis [124]. This is done by constructing probability distribution functions (PDFs) for

both the background only and signal+background hypothesis, that demonstrate the relative

probability of observing some value under the assumption of that model. Experimental sen-

sitivity (based on simulation) is concerned with the median significance with which a model

can be rejected, rather than a single data set (which would be collected once an experiment

is operational). In order to do this, the median value for the alternative hypothesis should

be used to test the null hypothesis, where the sensitivity can be characterised by the p-value
of this median value [124]. This is illustrated in Fig. 5.5.

In this context, the discovery power of an experiment can be thought of as the probabil-

ity of observing data compatible with the signal+background hypothesis if the background

only model is true (a detector has seen a ‘signal’ - is it just background?), and the exclusion

power the probability of observing data compatible with the background only hypothesis

if the signal+background model is true (a detector has seen ‘nothing’ - is the signal just too

small?).

For experiments like SABRE that aim to explicitly test the modulation of a DM signal, the

key background of concern is the apparent modulation of a (presumably) constant rate due

to statistical fluctuations, as analysis of the modulation signature typically involves the sub-

traction of the constant signal component, or fitting to some cosine function [37]. As such, to

construct the PDFs used to test experimental sensitivity, these fluctuations should be mod-

elled over a detector’s lifetime, and fit to a cosine function to find the probability distribution

for observable modulation under both hypotheses.
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